INTERFERENCE ALIGNMENT PERFORMANCE ON MIMO X CHANNELS WITH IMPERFECT CHANNEL ESTIMATION

AbdulRahman Mahmoud, Mostafa El-Khany and Khaled Elsayed

Abstract

Interference alignment (IA) can achieve the optimal degrees of freedom in interference-limited wireless systems. Popular IA schemes assume perfect global knowledge of the MIMO channels at all transmitters and receivers. In this paper, we investigate the error rate performance of interference alignment in MIMO $M \times 2$ X-channel systems at practical signal-to-noise ratios. Through theoretical analysis and Monte Carlo simulations, we analyze the effect of imperfect channel estimation at the receiver and transmitter on the bit error rate performance of zero-forcing interference alignment.

Perfect CSI

BER performance of the $M \times 2$ IA system using K-PSK modulation can be approximated as:

$$\text{BER} = \frac{1}{2} \text{erfc} \left(\frac{\sqrt{\gamma}}{2} \right)$$

where $\gamma = \frac{E_b}{N_0}$ and E_b is the effective symbol energy. For the special case of no CE error then

$$\gamma = \frac{E_b}{N_0}$$

With accurate CSI knowledge, perfect IA achieves single user performance.

System Model

- IA model

The transmitted directions are $T_n = H_n^t / \|H_n^t\|_2$ and $T_0 = H_0^t / \|H_0^t\|_2$.

- CSI model

The channel matrix H_0 is estimated at the transmitters or receivers as \hat{H}_0. It can be expressed as:

$$\hat{H}_0 = H_0 + \epsilon_0$$

The CE error ϵ_0 is independent of H_0 and the elements of ϵ_0 are assumed to be i.i.d complex Gaussian of zero mean and unit variance.

SIMULATION RESULTS

IMPERFECT CSI AT THE RECEIVER ONLY

We analyze the case when the 2 receivers have imperfect CSI while the M transmitters have perfect CSI. In this case, the effective symbol SNR gain (2) is

$$\gamma = \frac{E_b}{N_0}$$

for $l = 1, 2, \ldots, M$, where X_l is the lth diagonal element of X.

Generally, when only V out of M transmitters are sending data then

$$\gamma \approx 1 + \frac{E_b}{N_0} \left(\frac{V + 1}{M - V} \right)$$

At infinite bit SNR, the error floor due to inter-stream interference is given by

$$\gamma_{\text{IF}} \approx \frac{1}{\sqrt{M - V}}$$

IMPERFECT CSI AT THE TRANSMITTER ONLY

The effective symbol SNR gain in case all the M transmitters are active can be expressed as

$$\gamma \approx 1 + \frac{E_b}{N_0} \left(\frac{V + 1}{M - V} \right)$$

At infinite bit SNR, the error floor due to inter-stream interference is given by

$$\gamma_{\text{IF}} \approx \frac{1}{\sqrt{V + 1}}$$

IMPERFECT CSI AT THE RECEIVER AND TRANSMITTER

When V transmitters are active, the effective SNR gain is

$$\gamma \approx 1 + \frac{E_b}{N_0} \left(\frac{V + 1}{M - V} \right)$$

and the error floor due to residual interference after ZF is

$$\gamma_{\text{IF}} \approx \frac{1}{\sqrt{V + 1}}$$