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Abstract—Interference alignment (IA) can achieve the opti-
mal degrees of freedom in interference-limited wireless systems.
Popular IA schemes assume perfect global knowledge of the
MIMO channels at all transmitters and receivers. In this
paper, we investigate the error rate performance of interference
alignment in MIMO M×2 X systems at practical signal to noise
ratios. Through theoretical analysis and Monte Carlo simula-
tions, we analyze the effect of imperfect channel estimation at
the receiver and transmitter on the bit error rate performance
of zero-forcing interference alignment.

Index Terms—interference alignment, X-channel, degrees of
freedom, MIMO, zero-forcing, channel estimation error, sum
rate

I. INTRODUCTION

Interference alignment (IA) can increase the bit-rate of

communication systems in interference-limited regimes. IA

schemes aim to align interfering signals such that they span

a limited subspace of the received signal space, thus leaving

the rest of the signal space free from interference. IA schemes

can be classified as closed-form algorithms (e.g. [1], [2],

[3]) or iterative algorithms (e.g. [4], [5], [6] ). Closed form

IA schemes can achieve perfect IA without any iterations

but require global channel knowledge which is utilized in

determining vectors used in transmitter precoding and re-

ceiver decoding. In iterative IA schemes, assuming constant

channels, users iteratively update their transmit precoding

vectors and receive encoding vectors in order to minimize

the total interference or maximize their signal-to-interference

ratio [4], [5], [6].

In an M × N X-channel, there are M transmitters and

N receivers, where each transmitter sends an independent

message to each receiver at each time slot, forming MN
Tx-Rx pairs. When all transmitters and receivers have single

antennas, it was shown that a DOF of MN
M+N−1 (i.e. MN

total DOF over M + N − 1 channel extensions) can be

asymptotically achieved [7]. The same DOF can be achieved

by multiple antennas instead of channel extensions. For a

general number of users in the X-channel, only partial IA

can be achieved. In a MIMO M × 2 X-channel, when all

transmitters and receivers have M + 1 antennas, perfect IA

can achieve the optimal DOF of 2M [3]. Since perfect IA

schemes are designed assuming perfect knowledge of channel

state information (CSI) at the transmitters and receivers, their

performance at finite SNRs will be dependent on the accuracy

of the available channel estimates.

Fig. 1. System model of MIMO M × 2 X channel

In this paper, we analyze the bit error rate (BER) perfor-

mance of IA at finite SNRs, where we consider the perfect

IA scheme in MIMO M×2 X channels, with M+1 antennas

at each node, and receivers deploying zero-forcing detectors

[3] [7]. The effect of uncertainty in CSI have been previously

considered for MIMO single user systems with zero-forcing

receivers [8] and for the iterative IA scheme of [6], [9].

Since perfect M × 2 IA schemes requires global channel

knowledge at the receivers as well as at the transmitters, we

investigate the effect of imperfect CE on the bit error rate

performance when the CE error is present at transmitters only

or at receivers only or in the more practical case of CE error

at both transmitters and receivers. We also consider the case

when only a subset of the M transmitters are active. We will

show theoretical formulas for the performance on Rayleigh

channels and verify them by Monte Carlo simulations. We

also investigate the effect of CE on the sum rate.

The rest of the paper is organized as follows: In section II,

we present the IA signaling scheme used for the X-channel

and the system model. In section III, we analyze the bit error

rate performance of the the M × 2 IA system with zero-

forcing detectors and compare it with the single user system

when perfect global CSI is available. We analyze the effect

of CE error on the performance when the CE error is at the

receiver only (section IV), or at the transmitter only (section

V) or at both the transmitter and receiver (section VI).In

section VII, we conclude the paper.



II. SYSTEM MODEL

We consider the system model of M×2 wireless X-channel

with M transmitters and 2 receivers as shown in Fig. 1.

Each transmitting or receiving node has M + 1 antennas.

At any time slot, each transmitter i, Txi, is sending the

independent data symbols xi1 and xi2 to the two receivers

Rx1 and Rx2, respectively. The modulated data symbols are

i.i.d, drawn uniformly from a constellation of size K , and

E[xijx
H
ij ] = Es, where E[X ] is the expectation of X and

XH is the complex conjugate transpose of X . Hij is the

(M+1)×(M+1) independent complex channel gain matrix

between Txi and Rxj and its elements are i.i.d complex

Gaussian with zero mean and unit variance. The complex

additive white Gaussian noise (AWGN) vector at input of

receiver Rxi is independently given by ni ∼ CN(0, N0I),
where I is the (M + 1) identity matrix.

We deploy the IA scheme of [1], [3], where the inter-

ference will be aligned at two randomly chosen directions

I1 and I2 in the signal space at receivers Rx1 and Rx2,

respectively. The vectors I1 and I2 are assumed to be

independent, Rayleigh distributed and of unit norm. Each

transmitted symbol xij is precoded using a precoding matrix

Tij such that all the interference received at Rx1 and Rx2 is

aligned at directions I1 and I2, respectively. The transmitted

vector from Txi is

Xi = Ti1xi1 + Ti2xi2, (1)

where Ti1 = H−1
i2 I2 and Ti2 = H−1

i1 I1 require CSI

knowledge at the transmitters. The received signal at Rxj

(for j = 1, 2) is

yj =

M∑

i=1

HijXi + nj = Bjxj + nj, (2)

where the (M + 1)× (M + 1) matrix Bj and the (M + 1)
column vector xj are given by

Bj =
[
H1jT1j H2jT2j · · · HMjTMj Ij

]
, (3)

xj =
[
x1j x2j · · · xMj

∑M
i=1,k 6=j xik

]T
, (4)

where [.]T denotes matrix transpose. From (2), the zero-

forcing (ZF) solution to retrieve the transmitted symbols at

Rxj , (j = 1, 2) is

zj = B−1
j yj = xj +B−1

j nj, (5)

so the first M components of zj are the interference free

noisy estimates of the M symbols transmitted to Rxj and the

last component represents the aligned interference symbols.

Since Bj is almost surely non-singular for randomly chosen

I1 and I2, 2M degrees of freedom (DOF) can be achieved

using this perfect IA scheme [3].

The channel matrix Hij is estimated at the transmitters

or receivers as Ĥij . Assuming the normalized mean square

error (NMSE) between any gain element in Hij and its

corresponding estimate in Ĥij is equal to e2, Ĥij can be

expressed as [10], [8]

Ĥij = Hij + eΩij . (6)

The CE error eΩij is independent of Hij and the elements of

Ωij are assumed to be i.i.d complex Gaussian of zero mean

and unit variance such that E[ΩijΩ
H
ij ] = (M + 1)I.

In the following sections, we theoretically analyze the error

rate performance of the M × 2 IA system for the different

cases of perfect or imperfect CE available at the transmitters

or receivers, when the ZF receiver of (5) is used.

III. ANALYSIS OF X-CHANNEL IA WITH PERFECT CSI

We analyze the BER of perfect IA, when perfect global

CSI is available at all transmitters and receivers. We show

analytical results and validate them using simulations.

A. Analytical Performance

For the M × 2 MIMO X-channel IA system, the expected

bit error rate (BER) over the 2M transmitted symbols is equal

to the average BER over the M symbols received at Rx1 or

Rx2 due to symmetry. Moreover, since all channel gains are

i.i.d and all data symbols are i.i.d drawn from a uniform

distribution, then the expected BER of Rx1 is equal to the

expected BER of Rx1 due to data symbols xij transmitted

from Txi. Thus, the expected system BER performance is

equivalent to the expected BER performance of the link

between Txi and Rxj .

When global CSI is available at all transmitters and

receivers with no error (e = 0), by (5) the noisy estimate

of x11 is z11(the first element of z1). By IA construction,

this ZF solution is free from interference with symbols

intended to other receivers. Thus, the expected BER of the

M × 2 IA system is equivalent to the average BER of the

single user 1×1 MIMO system with a zero-forcing detector.

Closed form formulas that tightly approximate the BER

performance of K-QAM and K-PSK modulation (QAM and

PSK modulation with K constellation points) in an AWGN

channel where presented in [11] and [12], respectively. These

approximations where extended to single user MIMO system

with Nt transmit antennas and Nr receive antennas, by

averaging them over the SNR per symbol which follows

a chi-square distribution with 2(Nr − Nt + 1) degrees of

freedom [8]. Then, for the special case of Nt = Nr = M+1
antennas, the BER performance of the M×2 IA system using

K-PSK modulation can be approximated as 1

BERK−PSK ≈

1

max(log2 K, 2)

min(2,⌈K/4⌉)∑

i=1

(1− µi)

where µi =

√
γs sin

2 ((2i− 1)π/K)

1 + γs sin
2 ((2i− 1)π/K)

,

(7)

1For QAM constellations, approximated BER expressions as a function
of γs exist, but we only consider PSK modulations due to space limitations.



and γs is the effective symbol SNR gain. For the special case

of no CE error then

γs =
Es

N0
. (8)

It is worth noting this performance will not be dependent

on M since the both transmitters and receivers have equal

number of antennas (M + 1).

B. Numerical Simulations

We performed Monte-Carlo simulations of perfect IA over

the M × 2 X-channel as explained in the previous section,

where the transmit precoding vectors are normalized.Using

simulations, we confirm that, with perfect global CSI knowl-

edge, the BER performance of perfect IA in the M × 2 X

channel is exactly equal to that of the single user system with

zero-forcing detectors. We also confirm that the simulated

performance, labeled ‘Sim. e=0.00’, of the M × 2 system is

closely approximated with the analytical results of (7) and

(8), labeled ‘Th. e=0.00’, and both are shown in Fig. 2, Fig.

4 and Fig. 5 for BPSK, QPSK and 16-PSK modulations,

respectively. Due to perfect IA with ZF and equal number of

transmit and receive antennas per terminal, the performance

is independent on the number of users M or the number

of transmit antennas. This agrees with the analysis in the

previous sub-section and equations (7) and (8).

IV. IMPERFECT CSI AT THE RECEIVER ONLY

We analyze the case when the 2 receivers have imperfect

CSI while the M transmitters have perfect CSI. This can

be the case in Time Division Duplex (TDD) MIMO systems

with perfect channel reciprocity. We assume that receivers

have prior perfect knowledge of the alignment directions

Ij . The NMSE of estimating each channel matrix at the

receiver is e2r, where the CE error model of (6) is assumed.

Whereas the transmit channel precoding matrices are exact,

the detection matrix of receiver Rxj is estimated to be B̂j .

A. Analytical Performance

The output of the ZF detector of Rxj can be modeled as

ẑj = B̂−1
j yj = B̂−1

j Bjxj + B̂−1
j nj, (9)

where from (3)

B̂j = [B̂j,1 · · · B̂j,M Ij ]. (10)

Let I be the (M + 1) identity matrix, then using the linear

Taylor approximation,

Ĥ−1
mk = (Hmk + erΩmk)

−1
≈ H−1

mk

(
I− erΩmkH

−1
mk

)
.

The mth column of B̂j , B̂j,m, can be written as

B̂j,m = ĤmjĤ
−1
mkIk

= (Hmj + erΩmj) (Hmk + erΩmk)
−1

Ik

≈ HmjH
−1
mkIk + er

(
Ωmj −HmjH

−1
mkΩmk

)
I ′k

− e2rΩmjH
−1
mkΩmkI

′
k

≈ Bj,m + erΩ
′
j,m, (11)
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Fig. 2. Analytical and simulated BER performance of 3 × 2 IA, BPSK
modulation, with receiver CSI error

for k = mod(j, 2) + 1, where I ′k = H−1
mkIk. The terms

with e2r were neglected, as the CE NMSE is assumed to

be small such that e2r ≪ 1. The elements of the column

vector Ω′
j,m are of zero mean and variance 2. This can be

intuitively understood by observing that the error variance

affecting B̂j,m is contributed by the error variance in both

Ĥmj and Ĥmk. Consequently, the detection matrix at Rxj

can be approximated as

B̂j ≈ Bj + erΩ
′
j , (12)

such that the elements of Ω′
j have zero mean and

E[Ω′
j(Ω

′
j)

H ] = 2(M + 1)I. (13)

Using the linear Taylor approximation, B̂−1
j ≈

B−1
j

(
I− erΩ

′
jB

−1
j

)
. From (9), the ZF estimate at Rxj is

ẑj = xj + n̂j, (14)

where n̂j is the effective noise at the jth receiver, composed

of the ZF enhanced noise plus the interference with other

users’ symbols due to imperfect CE, and is given by

n̂j = B−1
j nj − erB

−1
j Ω′

jxj − erB
−1
j Ω′

jB
−1
j nj. (15)

In this case, the effective symbol SNR gain (cf. (7)) is

γs =
Es

E[n̂jn̂j
H ]i,i

, (16)

for i = 1, 2, · · · ,M , where Xi,i is the ith diagonal element

of X . The (M + 1)th dimension is not accounted for when

calculating the effective SNR gain since it only carries the

already aligned interference symbols. Following an analysis

similar to the simpler case of single user MIMO ZF detection,

the effective SNR gain of xij given in (16) can be approxi-

mated as

γs ≈
Es

E[njnj
H ]i,i + e2r E[(Ω′

jxj)(Ω′
jxj)H ]i,i

, (17)

where e2r trace
(
(BH

j Bj)
−1

)
was neglected due to its small

impact. If only Txi is transmitting data, then from (13)
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Fig. 3. Analytical and simulated BER performance for 2× 2 IA, 16-PSK
modulation, with receiver CSI error

E[(Ω′
jxj)(Ω

′
jxj)

H ]i,i = E[xijx
H
ij ]E[(Ω

′
j)(Ω

′
j)

H ]i,i = 2(M +
1)Es. Generally, when only V out of M transmitters are

sending data, E[(Ωxj)(Ωxj)
H ]i,i = (V +1)(M +1)Es, then

γs ≈

Es/N0

1 + e2r(V + 1)(M + 1)Es/N0
(18)

=
Es/N0

1 + e2r(M + 1)2Es/N0

∣∣∣∣
V =M

. (19)

Thus, the performance of M×2 IA with receiver CE error

of NMSE e2r is given by (7) for K-PSK modulation, where γs
is respectively given by (18) or (19) if V or all M transmitters

are active. We observe that: 1) The BER is dependent on

Nt = (M+1), as due to CSI error, ZF is not able to perfectly

cancel the interference between the streams sent by the (M+
1) antennas of Txi. 2) The BER is dependent on V + 1,

since with CSI error, there is residual interference between

the streams sent from the V users to Rxj as well as from the

other receivers’ symbols aligned at the (M+1)th dimension.

As the bit SNR tends to infinity, there is an error floor as

the effective SNR is negatively dominated by inter-stream

interference

γ∞
s ≈

1

e2r(V + 1)(M + 1)
. (20)

B. Numerical Simulations

In this section, we confirm the analytical BER expressions

(7),(18), (19) and using Monte Carlo simulations of the M×2
X-channel IA scheme, with PSK modulations. We assume

that the NMSE of estimating a channel matrix at any receiver

is e2r. The rest of the simulation setup is same as that of

subsection III.B. The equations were verified for different

values of K , M , V and er and we found that they provide

very accurate estimation of the simulated performance. For

example, in Fig. 2, we show the performance in a 3 × 2
system with BPSK modulation, when different number of

transmitters V are active. We note that ZF IA is very sensitive

to CE errors. With a slight NMSE of er = 0.01, the

performance degrades significantly compared to the case of
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Fig. 4. Analytical and simulated BER performance of 2 × 2 IA, QPSK
modulation, with transmitter CSI error

perfect CE and the there is an error floor at a BER of 10−3. If

the NMSE is larger, e.g. at er = 0.05, the system is useless

due to the error floor dominated by interference. We also

confirm the validity of the equations for 16-PSK with M=2

in Fig. 3, where the BER performance and error floors are

shown at various receiver channel estimation qualities.

V. IMPERFECT CSI AT THE TRANSMITTER ONLY

In this section, we consider the case when the transmitters

have imperfect CSI knowledge but perfect prior knowledge of

the aligning directions I1 and I2. The receivers are assumed

to have perfect CE. This is a practical scenario due to CSI

feedback errors and delays.

A. Analytical Performance

Assuming the transmitters estimate each channel with CE

NMSE e2t , then the output of the ZF IA detector at Rxj is

ẑj = B−1
j B̂jxj +B−1

j nj = xj + n̂j, (21)

where B̂j is given by (10) which can be approximated similar

to (12) and (13). Then, the enhanced noise due to ZF and

CE error is approximated as

n̂j ≈ B−1
j nj + etB

−1
j Ω′

jxj, . (22)

Thus, the effective noise covariance matrix can be expressed

as

E[n̂jn̂j
H ] ≈

(
N0 + e2tE[Ω′

jΩ
′
j
H
]Es

)
(BH

j Bj)
−1

and the effective symbol SNR gain in case all the M
transmitters are active can be expressed as

γs ≈
Es/N0

1 + e2t (M + 1)2Es/N0
. (23)

At infinite bit SNR, the error floor due to inter-stream

interference is given by

γ∞
s ≈

1

e2t (M + 1)2
. (24)

The corresponding BER in case of PSK modulation is

calculated by substituting (23) or (24) in (7).
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modulation, with transmitter and receiver CSI errors

B. Numerical Simulations

Using simulations, we validate the analytical BER per-

formance, calculated by (23), (24) and (7) in case each

transmitter has independent CE for each channel matrix with

NMSE e2t . This is demonstrated in Fig. 4 for the 2 × 2 X-

channel with QPSK modulation for et = 0, 0.01 and 0.05.

VI. IMPERFECT CSI AT ALL RECEIVERS AND

TRANSMITTERS

In this section, we analyze the BER performance of

the more practical scenario when each channel matrix is

estimated at each receiver and transmitter independently with

CE NMSE e2r and e2t , respectively.

A. Analytical Performance

The transmitters and receiver Rxj will independently es-

timate Bj , respectively as B̂j ≈ Bj + erΩ
′
j and B̃j ≈

Bj + etΩ
′′
j , where Ω′

j and Ω′′
j are independent and the

approximation is as shown by (11) and (12). The effective

noise can be expressed as

n̂j ≈ B−1
j nj − erB

−1
j Ω′

jxj − erB
−1
j Ω′

jB
−1
j nj

+etB
−1
j Ω′′

jxj − eretB
−1
j Ω′

jB
−1
j Ω′′

jxj.
(25)

When V transmitters are active, the effective SNR gain is

γs ≈
Es/N0

1 + (e2r + e2t )(V + 1)(M + 1)Es/N0
, (26)

and the error floor due to residual inteference after ZF is

γ∞
s ≈

1

(e2r + e2t )(V + 1)(M + 1)
. (27)

B. Simulated Performance

Fig. 5 shows the BER performance of IA in the 2 × 2
X-channel, with 16-PSK modulation, and both transmit-

ters are active. We verify that the analytical equations of

(eq:TxRxEF), (26) and (7) provide a tight approximation

to the simulated performance. By comparing to the case of

CE at the transmitter only, we quantify the effect of having

imperfect CSI feedback.

VII. CONCLUSIONS

We analyzed the error rate performance of perfect inter-

ference alignment (IA) in M × 2 MIMO X channels with

zero-forcing detectors at finite signal to noise ratios. Our

analytical expressions were shown to closely approximate

the simulated performance. We show that in case of perfect

global channel knowledge at the transmitters and receivers,

the performance is the same as that of a MIMO single user

system. We observe that with perfect IA, the degradation in

performance due to imperfect channel knowledge is similar

in case the estimation error is at the transmitter only or at the

receiver only. We observe that the performance of IA is very

sensitive to slight channel estimation errors and severe error

floors exist due to residual interference. Thus, more robust

IA techniques should be investigated.
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